机器学习(2024Fall)课程笔记
Last updated on December 4, 2024 8:28 PM
本笔记为北京大学 2024 年秋季学期《机器学习》(04632036)的课程笔记。该课程由张牧涵老师开设。张老师的课程讲述非常精彩且有特点,全程板书且穿插了不少 insights。
本来头两讲是在 iPad 上进行笔记记录的,第三节课发现直接用 Markdown 可以跟得上,遂将笔记整理于此。
笔记按知识模块形式呈现如下。
目录:
由于博主正在被 ICS 和经双课全面绞杀,更新频率可能变缓,请见谅。
课程大纲:
id | topic | 课时 | 具体内容 | English |
---|---|---|---|---|
1 | 线性回归(Linear Regression) | 3 | 经验风险最小化, 矩阵求导,线性回归闭式解,岭回归和Lasso,最小二乘几何解释 | ERM, Matrix Derivatives, Closed-form solution to Linear Regression, Ridge Regression and Lasso, Geometric view of Least Squares |
2 | 逻辑回归(Logistic Regression) | 6 | 最大似然原则,交叉熵损失,线性可分,逻辑回归凸函数的证明,平方损失函数分类的缺点,Softmax Regression,线性回归的最大似然解释,岭回归的最大后验解释 | MLE, Cross Entropy, Linear Separable, Proof of the convexity of Logistic Regression, Drawbacks of squared loss for classification, Softmax Regression, MLE of Linear Regression, MAP of Linear Regression |
3 | 偏差-方差分解(Bias-Variance Decomposition) | 3 | 偏差方差分解,模型选择,奥卡姆剃刀原理 | Bias-Variance Decomposition, Model Selection, Occam’s Razer |
4 | 支持向量机与对偶理论(Support Vector Machine and Dual Theory) | 9 | 约束优化问题,拉格朗日乘子法,KKT条件,支持向量机主形式,对偶形式,对偶问题的SMO算法,核方法,松弛变量 | Constrained optimization, Lagrange Method, KKT conditions, Primal and Dual forms of SVM, SMO, Kernel methods, Slack variables |
5 | 表示定理(Representer’s Theorem) | 3 | 再生核希尔伯特空间,表示定理及证明,利用表示定理解释岭回归 | RKHS, Representer’s Theorem, Revisiting Ridge Regression |
6 | 学习理论(Learning Theory) | 3 | PAC理论,成长函数,VC维,VC泛化界 | PAC Learning Theory, Growth function, VC-dimension, VC Generalization Bound |
7 | 树模型和集成学习(Tree Models and Ensemble Learning) | 6 | 信息熵,信息增益,增益率,基尼系数,决策树,回归树,连续特征,Bagging, 随机森林,Boosting, AdaBoost, GBDT | Entropy, Information gain, Information gain ratio, Gini-index, Decision Tree, Bagging, Random Forest, Boosting, AdaBoost, GBDT |
8 | 高斯过程(Gaussian Process) | 3 | 多元高斯分布,随机过程,高斯过程回归,贝叶斯优化 | Multivariate Gaussian Distribution, Random Process, Gaussian Process Regression, Bayesian Optimization |
9 | 图模型基础(Graphical Models Basics) | 3 | 贝叶斯网络,条件独立性,D-separation,无向图模型 | Bayesian networks, Conditional independence, D-separation, Unconditional graphical models |
10 | 无监督学习(Unsupervised Learning) | 9 | 主成分分析,混合高斯模型,EM算法,变分自编码器,扩散模型 | PCA, Mixture of Gaussians, Expectation-Maximization, VAE, Diffusion Models |
机器学习(2024Fall)课程笔记
https://blog.imyangty.com/note-ml2024fall/